AD-R175 818

UNCLASSIFIED

geTicaL conpurruc STRRTEGIES(U) RGB ASSOCIATES INC 11
LAND MA R BAR T 14 NOV 85 AFOSR-TR-86-2284
Fase00 55 c-0601

F/G 972 NL




£
-

Sy by

-
—h

-’
-

- A G s

S A A

ol el

-
b

»

o

o

ol

el

o

o 2

———— ™ 3.2
=Ly

o 25l

lllll' 25 JlLe uu K

SCROCOPY RESOLUTION TEST CHART

NATO AL nnoe Ay STANDARNC 'gRy 4

h g$
‘l
:’ ::" ." ..
‘ ‘|‘~ ’Q"Q’."" ‘, ."““.‘...‘ “)

b'n 'g"




o " "~ AFOSR.TR. 86-2204

RGB ASSOCIATES, INC.

OPTICAL COMPUTING STRATEGIES Vol -

boonge f'/—‘- /-

REPORT

A3

AD-A175 018

CONTRACT F49620-85-C~0001

to

W Lt. Col. ROBERT W. CARTER A
5 AIR FORCE OFFICE OF SCIENTIFIC RESEARCH )
BOLLING AFB, DC 20332-6448 e

500
ke

o RICHARD BARAKAT
PRINCIPAL INVESTIGATOR

14 NOVEMBER 1985

DISTRIBUTION STATEMENY RS
Rpproved for public releasol
\ Distribution Ur'xlimitod

OTIC FILE CORY

. 86 12 09 040

¥
AV GRTSE LR,
) ‘ g

) s?k @.lcu_‘..ea,\‘ A

L Bt B

I .:‘\;

Nl

. - . . - R X Jpp— LYLNL .
PR Rr LA XAKART, RN R T e T ) e TR LRI Y
e .A.A‘..A!:’A"l?\‘a.v ‘i‘.‘ l.l'ifl‘lf‘ l;"&!‘ ot e oty 1A%t ety .‘:‘. AT ,‘Q‘-'I‘JO‘J h u'l.nh“""-.'.""!" () "‘ )




REPORT DOCUMENTATION PAGE

ts REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2e. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Appr
5. DECLASSIFICATION/DOWNGRADING SCHEDULE df:t °;’°d for em™1ic rolease ]
ribution tnlimited,
4. PEAFOAMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFOSR.-TR. 86-2204
6. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONWRGANIZATION
(1f applicable) -
RGB Associates same as 8a -
6c. ADORESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
P.0. Box 8
Wayland, Massachusetts 01778
same as 8c
8e. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) - - . T o
AFOSR/NE NE \ L\'C\\D&Q - \{ ID‘ C",\JUQ \
8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
Building 410 PROGRAM PROJECT TASK WORK UNIT
Bolling AFB ELEMENT NO. NO. NO. NO.
Washington, DC 20332-6448 61102F 2305 B4
11. TiTLE /iInclude Security Classification)
OPTICAL CCMPUTING STRATEGIES
12. PERSONAL AUTHOR(S)
Richard Barakat
13e. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT
Final — FROM1S Qctl4 TOLl3 Qct8S JY # Nov 85 21
16. SUPPLEMENTARY NGCTATION
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB. GR.
. e 1 , ,
2 Electro<optical, matrixivector multiplication,canonical.
19. ABSTRACT /Contlinue on reverse if necessary and identify by dlock number)
> The subject of the current research effort is the development of a theory of optical f

computing, it is generally agreed that optical computing has an advantage over digital
computing in situations where parrallelism can be exploited. The canonical examples

are matrixrvector multiplication and matrix-matrix multiplication. If the matrices

are both square and of size (n x n) then outer-product decomposition achieves a saving

in computational time because the N2 inner products can be evaluated concurrently, It is
outlined in Section 1. Our second completed contribution is the development of

a tractable mathematical model of an optical system (assuming incoherent light operations
and its use into an investigation of the inherent limits of computation of such a system
in terms of a lower bound on the -imultaneous resources of volume and computing time.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED & saMe as rpT. X oric users UNCLASSIFIED
22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c OFFICE SYMBOL

(Inciude Area Code)

ROARFRT._W. CARTFR. 1.t Col USAF . .. 202-767-4931 NE




Y
N
n
0?3
LM )
INTRODUCTION
aY
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lﬁ} ;
iﬁ$ Optical computing {that is the use of optical and electro-optical devices
t’p T
Ryt 4y .
' to perform mathematical computations such as matrix multiplication, solution
ﬁgﬁ of simultaneous linear equations, etc.) is a subject of current interest. One
Ot ‘
35 of the main reasons being the possible use of such device technology to large
. * .
0
Lt array processing, hopefully in the parallel processing mode. The computing
Q{ speeds attainable using optical components are the major factor in this quest.
D . .
") :
{b: There are basically two aspects of the problem. The first is the physics
0’ .

and technology of the devices that perform the manipulations via optical and/or
electro-optical means. A considerabié effort has been expanded upon device

development;'it is safe to say that this program has now begun to bear fuition

in that several devices have shown capabilities that warrant optimism.
S 4 ’
This brings us—to-the second aspect .of the problem, the subject of the

-,
-
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:2@ current research efforti;.namedy the development of a theory of optical com-
e
y puting, For examples it is generally agreed that optical computing has an
Y o . . . . .
“¢; advantage over digital computing in situations where parallelism can be

™

L Y

': exploited. The canonical examples are matrix-vector multiplication and
? .

L . . L . . ) ) , )

¢ matrix-matrix multiplication.- Generally, investigators in optical computing,
}“m have taken algorithms directly from the standard numerical analysis literature
,{f{ and modified it for use in optical computing. The most successful example is

matrix-matrix multiplication based on outer-product decomposition as
{ -
3 .
:;h popularized by Athale and associates. If the matrices are both square and of
N .

by : size nxn, then outer-product decomposition achieves a saving in computational
?ln !
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time bec .se the n2 inner products can be evaluated concurrently. However,

previous to the present investigation no one seems to have developed ab initio
numerical élqorithms specifically fo: -uge in optical computing by taking
advantage of the fact that convolutions can be performed very rapidly. We

have developed such an algorithm for matrix-matrix multiplications. It is
e .- =

outlined in Section lﬂi Our second completed contribution is the development

of a tractéble mathematical model of an optical system (;ssuﬁing incoherent

light opera;ions) and its use into an invéstigation of the inherent limits of

computatién,6f such a system in terms of a lower bound on the simultaneous

resources of;volumé and computing ﬁimé?j'This material is outlined in Section
- .

[ 2. Note that the material in these two Sections will be submitted for

/ publication in the near future. Work is still continuing on the influence of

,/‘h\ device uncertainty on parallel processing via optical computing.
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SECTION ONE

AN ALGORITHM FOR MATRIX-MATRIX
MULTIPLICATION VIA CONVOLUTION
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One of - the virtues of electro-optical computing is the ability to carry
out convolutibn operations very rapidly. Given.this technical advantage, it

is worthwhile to develop an algorithm for the multipliéation of two rectangular
matrices using convolution. |

To this end let us consider the matrix product C= Rﬁ where R is of

A

12 X n i iz X an C i j XxXn_.
size nl 27 B 1is of size n2 ny, d C vxs of size nl 3 let the

correspondiné,matrix elements be aij' bjk' and cik' Associate with A and

B the polynomials P(x) and Q(x), with x being interpreted as an inde-

terminate

(nl-l)n2n3+n2-l '
s
gsx (L)

P (x)

. . n2n3-l .
Q(x) q.x . (2)

t
t=0

Note that the degree of P(x) involves not only the size of A through ny

and n but also the size of B through n

2 The degree of Q(x), on the

3

other hand, involves only the size of B, namely n, and ny. The p and

q coefficients are related to the matrix elements of A and B by

ps = aij , if s = (1-1)n2n3+-]- 1 (3a)
_ . . <s<i
0 ’ if (1 l)n2n3+-n2 sSin,n, (3b)

and
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e
R
g
g = if  t =k -
‘ 9 ™ Py’ "2
o’% .
Y = i
: o , if t2n n,
R :
N with: 1€i€n,, 1€j<n, and 1<k<n,.
N . v - .
* We claim that the elements of the matrix product
)] ' ' .
h
E' selected coefficients of the polynomial
? '
.ﬂ R(x) = P(x)Q(x)
pr . S
ﬁx : nln2n3-l
8 = : r xm
RN Z m
m=0

‘-
N
:' where v
L) . m
- TR

m — psqm—s
o -
h ]
\_ -
:: is the discrete convolution of the p and q coeffi
(L
' r =~ are given by
.
.3 rn = ik ’ if m= (1—l)n2n
W4
y
- A formal proof (which is really a verification o
fj given. We begin by rewriting Eq. (6) in the form
b
|
N
' = 2 P 2 b
. ) sqms a;B;Yrd 1
b
L
,i where the summation in the second series 1s over:
‘G
»
"

o -"-'«'.

(«,_-‘_x " oS

j (4a)
(4b)
E are given by
(5)
(6)
cients. These selected
3+kn2-l . (7)

f the formulae) 1s now
ik (8)
vt -va'_r’\.b .‘ :, '\‘f‘-

'h"h‘».".v
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a: s = (i-l)nyng+j-1 ' (9a)

B: (i-l)n2n3 <sg< (;'L—l)nzn3 + ny ' ' (9b)
Y: t=m-s = knz— j : (9¢)
§: t <n,ny . (9d)

The & term is simply Eq. (3a), while the B _term is the negation of Eq.
(3b). Thg,‘Y term follows from Eq. (4a), while the § term i§ the negation
of Eq. (4b3. Upon substitution of the a term into the B inequality, we
immediately see-that this can only be true'

1<j<n2 ) (10)

In like fashion, substitution of the Y term into the & inequality leads

to the requirement that

-

m = (i-l)n2n3+'kn2- 1 (11)

which is Eq. (7). Thus the formulae are verified.

A construction which leads to the various formulae for Py and q, in
terms of aij and bjk respectively uses row vectors. Consider a row
vector P whose elements we denote by Py (coefficients of the polynomial

P(x)) composed of the matrix elements aij of A and strings of zeros

as depicted in Fig. lA. The range of s is

€ s« - -
O\S\nln2n3 n2n3+n2 1 (12)
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consequently

p 20, - if s 2 (n -linn (13a)

s _ 1 3

+h2

Jif s < in,n, . (13b)

(11}
o

Furthermér; the Py are related to the aij as given by Eq. (3a);as the
reader can verify by construction.

In like-fashion, we construcﬁfanother new fow vector § with elements
q, according to Fig. 1B. Unlike P, § has no strings of zero elemeqts.

The range of t is

n - l : (14)

0sts n,n .,
so that
= i 2
q =0, if t2nny . (15)
Within the range of t, the q, are related to the bjk by
9 = bjk ' if t = (k—l)n2+ n, =3 (16)

which reduces to Eg. (4a).

~

As an illustrative example of the algorithm, consider the case where A

A ~

is 2x2, B is 2x3 so that C is 2x3 (i.e., nl= 2, n.=2, n_=3).

The upper limits on the polynomials P, Q and R are 7, 5, and 11,

respectively. The p , q, and r coefficients evaluated according to

S

Eqs. (3), (4) and (7) are listvid 1n Table 1. Upon carrying out the convolu-

tion operation, Eq. (6), in cC.i. .r.ction with this table we have:




Table 1. Listing of the p, g and ¢t

coefficients for the

case where ;s is 2x2, B
9 Lo
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£y = €5 T Pd3* P19y T a)b1o% 25000
Tg = )3 = Pods ¥ P9y = @) D)3+ a by,
T7 7 ©1 T PedpT P9 T P11t 322%n
Tg = Cyp = Pgd3* Pydy 7 350 5% 35505,

r115 €33 = Pgdg*t P9,y = 3;,by 3+ 2,505,

These are, of course, the matrix elements as obtained by more standard

procedures.

The implementation of the algorithm can be carried out in a straight-
forward fashion by re-examination of Figs. 1A and 1B. Note that.thé row
vector P in Fig. lA consists of the rows of A in which zeros are inter-
spaced, *the number -of zeros is fixed. Thus we can easily handle the vector
J$] containiné the hatrix elements ai). The row vector {, containing the

matrix elements bjk’ is simply the colwms of B in reverse order, see

Fig. 1B. This vector is also easily handled in the implementation.

(17a)

(17b)

(17¢)

(174)

(17e)

(17€£)
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SECTION TwO

LOWER BOUNDS ON THE COMPUTATIONAL
EFFICIENCY OF OPTICAL COMPUTING SYSTEMS
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The advent of Very Large Scale Integrated (VLSI) circuitry has lead to
considerable_aecrease in the physic;l size of computers with a corresponding
increase in speed of execution of operations. Basically there are three
interrelated aspects to VISI: design and fabrication of the chips, design of
systems which use these chips for specific applications, and development of
algorithmg which utilize the inherent capabilities of such chips. The re-
volution in computer science, ?oi'both numerical and nonnumerical applications,
brought abéut by VISI continues unabated.

The computatidnal limitations of VLSI were first investigated by
Thompson [l]. For an introduction to this work see the basic text of
Ullman (2] which contains references to subsequent work. It has been shown
that any QiSI circuit with area A. and time T requires at least AT2= Q(n)
to solve various computational problems such as FFT, convolution, and 2 x2
matrix multiplication where n= 22. The symbol ! is defined in Ullman:
f(n) = Q(g(n)) means that there exists a positive constant ¢ such that for
an infinite number of values of n we have f(n) Zcg(n).

Nevertheless, VISI suffers from the limitation that the technology upon
which it relies is inherently two-dimensional. Snyder's recent review {3]
contains a very useful discussion of the constraints imposed by VLSI as regards
planarity. In particular conventional VLSI chips are constructed by super-
posing a small number of layers on top of a substrate. This substrate has a
thickness which is order of ma:nitude greater than the size of the transistors

and wire width. Input and outjut from a cogventional VLSI chip must be made

A AT L o TR o A



‘4,:
‘Qf '
abt
92‘ e . - .
‘ by a limited number of pads located on the sides of the chip. VLSI chip tech-
o .
g' nology is changing almost daily; however, scme of the more basic aspects are
i
é‘l ) discussed in Barbe [4] and Einspruch [5]. Although an ensemble of two-
: dimensional chips can be placed on top of each other with holes drilled ;own
N :
?2 through tpem for interchip communication, the total number of layers is
E&l seriously limited by the substrate thickness of each chip: consequeqtly the
v' resulting device cannot properly by terméd “three-dimensional VLSI". For this
oW .
?N reason, .it appears that truly three-dimensional VLSI will most likely not be
;;’ possible to fabricate. Nevertheless somé interesting theoretical investiga-
0\
. tions of three-dimensional VLSI have beén carried out: Rosenberg (6},
B ) :
:: Leighton and Rosenberg (7].
ﬁ; The purpose of the preseht communication is to summarize investigations
i _ .
. into various aspects of the computational performancé of three-dimensional
\j devices which make hybrid use of electronic and optical components to perform
;5 operations. Our goal is to facilitate general statements on such electro-
N optical computations with specific reference to lower bounds on their com-
K™
;fi plexity. Since such devices may contain a large number of components, we
tﬁ term them VILSIO, with the O denoting optics.
e We note that a very useful overview of optical computing (more properly
;: electro-optical computing) may be found in Caulfield et al. (8].
35 In order to carry out such an analysis we outline the development of an
; abstract model of VLSIO which 1s essentially technology independent but
;\ incorporates the physical restrictions of light beam propagation as expounded
i; by Gabor [9], especially with ruspect to tﬁe very important fact that the

o
s

"«
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amount of information passing through a cube of small volume is bounded. This
LY . i . .
t physical constraint allows us to adapt previous VLSI lower bound arguments to
4o .
+

the VLSIO situation and allows for comparisons of electro-optical computing

3
38 . .

devices in terms of their volume V and the time T taken by VILSIO on a
e -
gk given input (S number of time units that elapse from the first input signal
3

until the last output signal). We avoid making assumptions about the precise

-~

physics of the devices utilized, This would only limit the later application

i% of these ideas as the physical models are improved and modified. Optical

W . .

;E physics (through Gabor's theorem) implies an upper limit on the rate of in-
f‘ formation trangfer across an optical beam, and hence a lower bound on com-

.

'% putational efficiency of VLSIO. 1In addition we assume that any 2-D convolu-
i)

}; tion of an nXxn array of points can be achieved by a VLSIO device in unit
‘;‘ time step. This assumption is reasonable because there already exist optical
%% devices which perform thusly.

31 Note that all the variables and functions are taken to be Boolean (i.e.,

the values of the variables are taken from {0,1}).

P

oo We begin by discussing the well known abstract two-dimensional model of
oy .
' a VISI chip as a L XL,XL, grid graph with height L, (<< L, or L)) held
J' N
constant. The distance between grid points is w, the feature width. The
P
[}
f: chip processors are located at various distamce nodes of the grid graph with
{z each processor storing a state consisting of b bits. Furthermore the
processors execute synchronously on a step consisting of a time unit of
2!
;: duration T seconds. The remaining nodes are used for wire routing, or for
2 . . ' . .
s input and output pods. Each wire can run along a path in the grid graph from
W
i\
1]
0
‘F
5:
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an input poa, or a processor, to various outéut péds, or processors, Wires
are not allowed to intersect. On each tim; step, a value consisting of b
bits of information is transmitted across the wire grid from either an input
pod or a processor. The state of eacﬁ.processor is then updated on each step
by a fixed function of the values transmitted by the wire; leading into the
processor, and by the state of the processor, in the previous step. The unit
step transmission time across wires is justified by the fact that wire trans-
mission can be made generally faster than transistor switching times. This
remarkably'simpie model is sufficient to determine the computational efficiency
of VLSI devices. |

Following the two—dimensionai version, the fundamental building block of
our VLSIO device is the optical box B. It is a parallelopiped having lengths
Ll' L2 and L3 with input and-output faces, Fin and Fout' These faces
are assumed to take as input and as output two-dimensional integer arrays
I(x,y) and O(x,y) respectively. For convenience, we consider the input
sources and output detectors to be very small compared to the size of the
optical box (in order to minimize optical diffraction effects), furthermore
they are uniformly spaced a distance w apart. The input sources are taken
to be LED's (laser emitting diodes) and the detectors are unspecified except
to state that they are sensitive only to the intensity of the LED radiation.
We remaind the'reader that most electro-optical computations are now performed
via incoherent, geometrical optics based processors and not by coherent,

Fourier transform based processors. The ancillary optical equipment (lenses,

prisms, gratings, etc.) which spread and then collect the light can be

[ ) e A A L RY: 4 ) Ty - - ) 00 n YRl Ry » . S € O SILe oy 0 v
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1:“
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BN
sty
'."i ,
) neglected in this version of the abstract model.
(4R .
@‘ The output array is computed on each time step with a duration T as a
LY ’
& . . :
\‘ fixed function AB of the input array; AB will, of course, depend upon the
EAY
detailed optical characteristics of B.
aﬁl The optical box, in addition to being three-dimensional, also differs
" from VLSI in another way; namely, optical beams rather than wires provide
i "
storage and cross-flow. Since the modus operandi is incoherent radiation,
,2 these beams can intersect without interacting. The basic question that now
J.‘l ’ .
fﬁ arises is: "to what extent do optical (laser) beams behave as wires?"
. A wire can only transport information at a finite rate depending upon
b . :
tz- wire cross-section, skin effects, etc. We would also expect an optical beam
)
N to perform similarly not withstanding the greater information rate, This
. ,
" problem has already been addressed by Gabor (9] who studied the "metrical
3
4% information" in a light beam. The conclusion that he draws is that a light
N
B¢} ]
nt
.H. beam always has a finite upper limit with respect to information rates; the
(1
a upper limit depending upon wavelength of light, smallest effective beam area,
LX)
%
Q;r solid angle of divergence, etc. We need not concern ourselves with explicit
¥
=Jf formulae; for our purposes it suffices that we can interpret an optical beam
4 P
= as a wire.
9«

Given this equivalence, we turn to the important problem of determining
lower bounds (in terms of simultaneous volume and time) on the computational

@ resources required for VLSIO to solve various problems.

In order not to unduly lengthen the text, it is assumed that the reader

P o N

is familiar with Sections 1.4, 2.1 and 2.2 of Ullman's basic text [2].
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Consider a Boolean function f with a set X of n input variables

and a set Y of m output variables. Let X' be a subset of X; also let

PE(XL. X, Y

R L’ YR) where X

X and YLIY

L' *r are partitions of X and Y

R
respectively. We term P balanced if between one-third and two-thirds of X!
lies in XL and note it by Pb. If a and B are two input assignments,
then we term them a fooling pair of assignments to X if:

l) output Y is distinct for input assignments a(X) and a(XL)B(xR)

L

2) output YR is distinct for inpui assignments B(X) and a(xL)B(xR).
In addition, let the fooling set for P be a set of assignments A of X
such that for all distinct a, B€A, at least one of (a,B), (B,a) .is a
fooling pair. .

Finally, we.iequire that the ldcations and times of the input and output
are given only once.

Crucial to the analysis is the conqept of information content (essentially

“"the amount of information that must cross a boundary in order to solve the

problem”). Formally the information content of the Boolean function f is;

max min max logz(|A|)
If = (1)

X' Pb A

where A denotes the fooling set corresnonding to Pb. The following
functions (of importance in electro-optical computing) are known to have
information content L= Qn):

a) n point discrete Fourier transforms.

. . . . , 2
b) multiplication and inversion of two %% £ matrices where n=4{",
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c) n point convolution.
!.l
B ‘
‘. The following important result on lower bounds is due to Thompson [1,2]:
. Any two-dimensional VLSI chip computing a Boolean function £ requires
i sitmultaneous area A and time T satisfying AT? = Q(Ii).
0
".:: We now prove: Any three-dimengiomal "optical box" computing a Boolean
o . . . ' ' . o
N funetion £ requires simultaneous volume V and time T satisfying
. v'r3/2 = 9(13/2).
5 i |
A The proof (which we now sketch) is an adaptation of the two-dimensional
o
.:! technique. Let the device be a parallelepiped having dimensions L1<L2<L3
o with volume V= L1L2L3. Choose X' to be the subset of X such that
,.).:
f If=If(X'). For each 1i=1,2,3 we can find a cut Ci of area
[
A, € 2V/L, i=1 ; (2)
| i i
¢
which disconnects the device into two components each of which contains at
l.
'
: most two-thirds, but no less than one-~third, of the inputs of X', By
g definition at least If bits must be transported across each cut; this
N
:C requires time {
} If |
T 2 . (3)
" i
4
o
QY
b
&8 Consequently
' 2.3 3 3/2
y 2 2
VT A1A2A3T b¢ p {4)
:;: or
)
! ; ~ .3
v:“ \."ri - SUI /2) (5)
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which is the sought-for result. The main point to emphasize is that this
result depends upon the fact that we can treat light beams as if they were
wires.

An immediate consequence of this theorem is that the lower bounds for
optical computing are: |

a) n point convolution or n point discrete Fourier transforms
vr3’? = Q@33 . (6)

b) multiplication and inversion of two {x{ matrices where n=2?

32 2 q4?

vt . (7)

These results follow from the statements quoted after Eq. (1). Equations (6)
and (7) represent the lower bound pétfoxmance of these two operations in
terms of volume and time. It is important to remember that these bounds are
a consequence of the fact that we allow the entire volume of B to be

operative.
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